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ABSTRACT: We present a new approach for identifying features
of ligand−protein binding interfaces that predict binding selectivity
and demonstrate its effectiveness for predicting kinase inhibitor
specificity. We analyzed a large set of human kinases and kinase
inhibitors using clustering of experimentally determined inhibition
constants (to define specificity classes of kinases and inhibitors) and
virtual ligand docking (to extract structural and chemical features of
the ligand−protein binding interfaces). We then used statistical
methods to identify features characteristic of each class. Machine
learning was employed to determine which combinations of
characteristic features were predictive of class membership and to predict binding specificities and affinities of new compounds. Experiments
showed predictions were 70% accurate. These results show that our method can automatically pinpoint on the three-dimensional binding
interfaces pharmacophore-like features that act as “selectivity filters”. The method is not restricted to kinases, requires no prior hypotheses
about specific interactions, and can be applied to any protein families for which sets of structures and ligand binding data are available.

■ INTRODUCTION
The ability of small molecules and proteins to bind selectively is
fundamental to the functioning of biological systems and is
useful in numerous areas of chemical research, including drug
design.1 Improved understanding of the structural and chemical
features that govern selectivity across large sets of proteins and
ligands is needed to improve control of broad- and narrow-
spectrum ligand binding, enable tuning of binding specificities,
control off-target effects, and aid in the design of novel selective
ligands and new protein receptors and enzymes. The selectivity
of molecular recognition interactions can be defined properly
only if many combinations of protein−ligand pairs are
examined and differential binding correlated with structural
features of the interactions. Although a wealth of structural and
functional data is available for large, medically important
families of proteins such as kinases2−6 and viral proteases,7,8 it is
challenging for humans to synthesize information about
thousands of binding affinities and millions of intermolecular
binding contacts and form sufficiently rich hypotheses needed
to predict molecular recognition specificity across these large
target families.
In this work we present an automated method that identifies

structural features that determine binding selectivity. Our
computational pipeline employs a novel combination of
binding-data clustering, virtual ligand docking, and statistical
and bioinformatics analysis to yield three-dimensional models
of specificity-determining features (SDFs) in binding interfaces.
The identified structural features can be used to make
predictions of ligand binding affinities and for ligand design.

Large-scale data sets of experimental ligand−protein binding
interactions are becoming more numerous with improvements
in experimental technologies and systems biology.9 Previous
studies using quantitative structure−activity relationship
(QSAR) methods have demonstrated that important informa-
tion about binding interactions can be revealed by clustering
ligand−protein interactions based on molecular interaction
fingerprints.10−12 Proteins and ligands for which ligand−
protein binding data exist can also be classified by clustering
them according to their experimentally determined binding
affinities, which requires no a priori knowledge of their bound
complex structures.13,14 Advances in genomics and structural
biology have, however, produced a wealth of sequence and
three-dimensional structure data for important protein
classes,15,16 posing a challenge of how to best integrate this
wealth of data to formulate predictive hypotheses. Previous
chemogenomic and proteochemometric studies that utilize
large binding data sets have proven useful for modeling and
predicting interactions and selectivity of receptors and enzymes
with ligands and for the discovery of novel bioactive
molecules.13,14,17−30 However, these studies generally have
not classified three-dimensional binding interface structures,
involving both ligand and receptor structures simultaneously,
but instead rely principally on sequence data and ligand or
protein structure alone. Furthermore, they have not examined
whole protein families to distinguish between subgroups for
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specific sets of structural features in the ligand−protein binding
interface itself that control ligand binding selectivity within the
individual subgroups.
The interface that occurs between a protein and bound

ligand is a complex surface containing numerous sites and
diverse intermolecular interaction types.31 There are frequently
specific regions within the interface that contribute predom-
inantly to binding energy and selectivity,32,33 but they act in
combination. Consequently, ligand binding is driven by the
three-dimensional arrangement of binding site intermolecular
interactions rather than by target amino acid sequence or ligand
structure per se. Categorizing proteins according to their ligand
binding preferences, and also ligands according to their protein
binding preferences, would appear to require a joint
classification of binding constant data and sets of binding
interfaces. We hypothesized that such a joint classification
would enable prediction of the binding selectivity of new
proteins and ligands for which binding interfaces can be
determined or modeled. We also hypothesized that, rather than
classify the interfaces as complicated three-dimensional data
objects, we could first classify ligands and proteins by binding
data and extract from the simple chemical interaction features
observed for all the complexes those interaction features that
occur with high frequency in only some of the clusters.
Machine learning could then discover combinations of these
features that determine the similar binding behavior of the
complexes within the cluster and differentiate them from other
clusters. Also, if we preserve both chemical and structural in-
formation about the predictive features, the feature combina-
tions can be useful for screening and to serve as templates for
the design of new ligands and proteins.
Here, we examine the validity of our hypotheses by

employing an extensive set of binding data for human protein
kinases and a set of kinase inhibitors.6 Kinases represent a good
model for the classification of binding interfaces not only
because they are structurally well characterized and extensively
studied but also because they are an attractive target for
therapeutic intervention in cancer,34−36 inflammation,37−42

diabetes,43,44 arthritis,45 neurodegenerative disorders,46 and
infection by HIV-1 and other pathogens that acquire drug
resistance.47 By combining virtual docking, proteochemomet-
rics, bioinformatics, and statistical and experimental approaches,
we implement an unsupervised pipeline to classify binding
interactions across a large set of proteins and ligands and to
identify SDFs at ligand−protein binding interfaces. SDFs are
constellations of points within the ligand−protein binding
interface where intermolecular hydrogen bonding interactions,
polar−polar contacts, and hydrophobic interactions are formed.
They consist not merely of specific protein residues but of
specific spatial locations in the binding interface that function as
hot spots for intermolecular interactions. As such, the SDFs are
not necessarily sequence-specific and may apply to groups of
proteins whose active sites have some degree of sequence
variation.
We first establish that kinases can be clustered into distinct

groups based on similarities of their binding affinity (Kd)
profiles for a given set of inhibitors and, conversely, that we can
cluster inhibitors based on similarities of their binding affinities
for a given set of kinases. This finding is similar to earlier
clustering studies13,14,20 which use metrics other than Kd (IC50
values and percent inhibition) to compare protein and ligand
binding profiles. Second, we show that within individual kinase
clusters we can identify SDFs distributed over three-dimensional

binding interfaces that are specific to the kinases within the
clusters. These cluster-specific SDFs underlie the binding
profile similarities of members within a given kinase cluster. As
a validating example, the method is able to detect that the
gatekeeper residue is a hydrophobic SDF for MAP kinases, in
agreement with the gatekeeper hypothesis.48,49 Furthermore, it
is demonstrated that the identified SDFs can be used in
conjunction with machine-learning methods to induce models
for accurately predicting kinase inhibition activity of com-
pounds from outside the standard data set, as confirmed
experimentally.
The reported findings have allowed us to develop intuitive,

easily visualized, and predictive models for understanding the
basis of binding selectivity of proteins and ligands. Kinases were
selected as a proof-of-principle model because they are well
characterized experimentally and structurally, and abundant
data are available pertaining to the effects of small structural
changes on ligand binding properties. The unsupervised pipe-
line presented here is equally applicable to other large-scale sets
of proteins and ligands for which there exist tables of binding
data and protein structures that can be aligned. Therefore, it is a
tool that can exploit the vast amounts of structural and binding
data that emerging fields such as chemogenomics have recently
made available50 in order to provide for better ligand binding
selectivity.

■ RESULTS
Clustering Kinases and Kinase Inhibitors According to

Binding Affinities. An interest in determining whether the
table of experimental kinase-inhibitor binding data published by
Karaman and co-workers6 can be ordered to show patterns of
binding selectivity motivated us to cluster the table data based
on binding affinities. The dissociation constants within the
table of binding data, which contains 317 kinase structures
and 38 inhibitors, span a wide range from ∼10 pM to 10 μM
(Figure 1). Chemical structures of the 38 inhibitors are shown

in Figure 2. As demonstrated in Figure 3A, prior to clustering, a
raw heat map of the 317 × 317 matrix of pairwise Euclidian

Figure 1. Histogram of experimental binding affinities (pKd) of 38
inhibitors to 317 human kinases. Inhibitors with observed pKd < 5
were considered nonbinders, in accordance with the work of Karaman
et al.6 Binding affinities are color-coded from weakest (aqua-blue) to
strongest (dark red).
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distances for the kinase binding affinity vectors shows no
notable grouping. Eight kinase clusters were assigned in order
to mimic the number of clusters reported in the human kinome
phylogenetic tree,51 leading to clear grouping following
k-centers clustering (Figure 3B). Kinase pairs clustered within
the squares centered on the diagonal in Figure 3B have highly
similar binding profiles to the set of 38 ligands. Kinase clusters
I−VIII contain 23, 11, 29, 83, 42, 64, 21, and 44 kinase
structures, respectively. The members of each kinase cluster are
listed in Table S1, Supporting Information. Similarly, clustering
of the 38 × 38 matrix of pairwise Euclidian distances for the
inhibitor binding affinity vectors results in clear grouping
(Figure 3C). Optimum ligand clustering results based on
consistency of cluster assignment during leave-one-out analysis

were obtained when four ligand clusters were assigned. Ligand
pairs clustered within the squares centered on the diagonal in
Figure 3C likewise have similar binding profiles to the set of
317 kinases. Ligand clusters 1−4 contain 11, 14, 6, and 7
ligands, respectively, which are listed in Table S3, Supporting
Information.
In order to demonstrate the value of clustering kinases and

ligands together based on binding affinities, we plotted a heat
map of the original, nonclustered 317 × 38 ligand−protein
binding matrix (Figure 4A). This heat map shows no
discernible binding patterns. When the binding matrix is
ordered according to the four identified ligand clusters shown
in Figure 3C, there is only a slight change in the heat map
organization, producing no clear clustering (Figure 4B).

Figure 2. Structures of 38 kinase inhibitors used in present study. Numbers correspond to the inhibitor identification numbers in Figure 4B,C.
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However, when the binding matrix is ordered according to both
the identified ligand clusters and the identified protein clusters
shown in Figure 3B, distinct groupings and binding patterns
become apparent (Figure 4C). Kinases (or ligands) of the same
cluster are located contiguously in the grid. The results indicate
that kinases within a cluster tend to share strong similarity in
the binding metric relative to each other and weaker similarities
in the binding metric relative to kinases in other clusters.
The kinase and inhibitor clusters shown in Figure 4C have

certain defining characteristics. Inhibitors in ligand cluster 1
bind with generally high affinity to the proteins in kinase cluster
VII and with moderate affinity to many proteins in kinase
cluster I, but, with the exception of AST-487, do not bind
widely to any other kinase clusters. Ligand cluster 2 is sparse,

and its members do not bind broadly to the members of any
kinase cluster. Ligand cluster 3 is likewise sparse, with the
exception that its members bind tightly to the proteins in kinase
cluster II. Ligand cluster 4, in contrast, shows generally broad
binding. Its members bind particularly broadly and tightly to
the kinases in kinase clusters VI−VIII. Staurosporine, a member
of ligand cluster 4, binds to the greatest number of kinases,
including the majority of members of each of the eight kinase
clusters, and has Kd < 10 μM for 288 of the 317 kinases in the
data set. Ligand cluster 4 contains several other broadly binding
inhibitors, including sorafenib, VX-680, SU-14813, and
sunitinib, which bind with Kd < 10 μM to 85, 153, 182, and
198 separate kinase structures, respectively.
It is noteworthy that most, though not all, of the

promiscuously binding compounds are clustered in ligand
cluster 4. The clustering procedure does not attempt directly to
group compounds into clusters of promiscuous and selective
binders per se. Rather, the clustering procedure groups them
according to the total Euclidean distances between their 317-
member binding affinity vectors so as to place together ligands
whose vectors have smaller Euclidean distances between them.
Though AST-487 is a broad binder like staurosporine and
sunitinib, it is assigned to cluster 1 because the wide range of
kinases to which it binds has less overlap (average of 171
kinases in common) with those of the cluster 4 ligands than do
the cluster 4 ligands with one another (average of 221 kinases
in common). This smaller overlap yields a decreased Euclidean
distance between AST-487 and the other ligands of cluster 1,
leading to its assignment to ligand cluster 1.

Cluster Validation. For a description of the architecture of
kinase active sites, the reader is referred to a detailed review by
Liao.52 Out of the 317 kinases in the table of binding data, 112
had experimentally available structures as of February 2010. An

Figure 3. Heat maps of binding affinity similarities between kinases
and between inhibitors. Pairwise Euclidian distances based on
38-element vectors of Kd values (for kinase−kinase distances) and the
317-element vectors of Kd values (for inhibitor−inhibitor distances) are
plotted. Pairwise distances are represented by colors, with red and blue
indicating smallest and greatest distances, respectively. (A) Unordered
heat map of 317 × 317 kinase−kinase pairwise distances. (B) Ordered
heat map showing k-centers clustering of the kinase−kinase pairwise
distances. Eight clusters were assigned to mimic the number of clusters
in the human kinase phylogenetic tree. Kinase cluster numbers are
indicated by Roman numerals. (C) Ordered heat map showing k-centers
clustering of the inhibitor−inhibitor pairwise distances. Optimum
clustering occurred with the assignment of four clusters. Ligand cluster
numbers are indicated with Arabic numerals.

Figure 4. Heat maps showing binding matrix of experimentally
measured binding affinities of inhibitors to kinases. Colors correspond
to the binding affinities that are color-coded in the histogram of Figure 1.
The background cyan color represents nonbinders (defined as Kd >
10 μM). (A) Unordered binding matrix. (B) Binding matrix ordered by
four ligand clusters. Ligand clusters are numbered horizontally. (C)
Binding matrix ordered by four ligand clusters (numbered horizontally)
and eight kinase clusters (numbered vertically).
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all-versus-all comparison of the binding site structures of this
subset of 112 kinases (listed in Table S2, Supporting
Information) was performed by using the PocketMatch
algorithm.53 For each of the eight kinase clusters, an average
score for all pairs of kinases belonging to the cluster
(intracluster PMScore) was calculated. An average score for
all kinases within a cluster matched with all kinases outside the
cluster (extracluster PMScore) was likewise calculated. Higher
scores indicate greater sequence and chemical similarity. The
pairs of average PMScores (intracluster, extracluster) for kinase
clusters I−VIII are (42,34), (55,33), (37,32), (27,30), (35,33),
(37,32), (37,31), and (37,35), respectively. The differences
between each cluster’s intra- and extracluster PMScores are
statistically significant (P < 0.05). In the case of seven of the
eight kinase clusters, the average intracluster pairwise PMScore
exceeds the average extracluster pairwise PMScore. This greater
intracluster score indicates that kinases within a specific cluster
tend to have binding sites that are structurally and chemically
more similar to one another than to the binding sites of the
kinases outside the cluster. Only cluster IV, which contains the
largest number of members, has a larger intracluster PMScore
than intercluster PMScore, demonstrating that there exists as
much variability between its component binding sites as there
exists across the entire kinase set. Figure S1 of the Supporting
Information depicts the overlap of binding site structures for
selected clusters.
These results indicate that structural differences between

ligand binding sites produce distinct and recognizable patterns
in ligand binding profiles. The results also establish that the
kinase clustering, though it is based on experimental binding
affinities of kinase inhibitors and not on structural information,
nonetheless captures certain structural and chemical differences
in ligand binding sites.
Kinase clusters were also compared to one another in terms

of both full-length kinase domain and binding-site amino acid
sequence-alignment scores (pairwise percentage sequence
identity) using the ClustalW alignment program.54−56 Average
pairwise intracluster and extracluster alignment scores were
computed for each of the eight kinase clusters, where extra-
cluster scores are those between members of a specific cluster
and all kinases outside the cluster. For full-length kinase
domain sequences, the pairs of average sequence alignment
scores (intracluster, extracluster) for clusters I−VIII are
(46,21), (70,20), (33,19), (19,18), (17,17), (26,18), (39,20),
and (16,18), respectively. The average binding-site sequence
alignment scores for clusters I−VIII are (46,31), (47,25),
(38,27), (30,29), (29,29), (31,27), (37,31), and (29,29), res-
pectively. Clusters I, II, III, and VII have average intracluster
alignment scores for both full-length and binding site sequences
that are considerably greater than the corresponding extrac-
luster scores. These four clusters are thus characterized by
kinase members that have a higher degree of sequence identity
with other kinases in the same cluster than with the kinase set
as a whole.
Extracting Structural Features That Drive Cluster-

ing. Virtual Docking To Predict Binding Conformations of
Inhibitor−Kinase Complexes. Because experimental structures
of complexes are lacking, we used virtual docking to generate
the binding interfaces for the complexes between the 38 kinase
inhibitors and each of the 112 kinases with available crystal
structures. All docking calculations were performed using
AutoDock 4.2.57 In order to estimate the accuracy of our
docking protocol, we tested its ability to reproduce the

experimentally determined conformations of a set of 75 ligands
(5 of which are among our standard set of 38 inhibitors) bound
to 104 kinase structures in a set of self-docking experiments.
For 19%, 45%, and 75% of these 104 ligand−kinase complexes,
the rmsd of the ligand heavy atoms from at least one of the two
top-scoring poses relative to the experimental ligand con-
formation is ≤0.5 Å, ≤ 1.0 Å and ≤2.0 Å, respectively. This
accuracy rate in self-docking compares well to that reported for
other kinase docking studies.58,59 In order to further evaluate
the docking protocol, we performed cross-docking runs for the
38 inhibitors on a subset of 44 kinases. In 26% of all cases of an
inhibitor docked to two separate kinase structures, the heavy-
atom rmsd between the two top-scoring poses in each receptor
structure is ≤2.0 Å. This percentage compares well with other
cross-docking studies employing rigid receptors.60,61

Identification of Interaction Hot Spots Common to All
Clusters. When we ran our spatial binning procedure (see Com-
putational and Experimental Methods, Supporting Information),
we found that there exist specific spatially localized intermolecular
interactions that are shared predominantly by protein members
belonging to single kinase clusters. In this paper, spatial bins that
are highly populated with atoms participating in a specific
intermolecular interaction type are referred to as interfacial features.
Interfacial features were identified for intermolecular hydrogen
bonds, hydrophobic interactions, and polar−polar contacts. We
identified two classes of interfacial features: global interfacial
features, which are shared by all kinase (or ligand) clusters, and
cluster-specif ic interfacial features, which are ≥3 times more likely
to be occupied among the complexes formed by the protein
(ligand) members of a given kinase (ligand) cluster than among
the complexes formed by any other cluster’s members. We also
designated whether interfacial features occur in protein space or
ligand space. Interfacial features in protein space are bins that are
highly populated by protein atoms participating in intermolecular
interactions. Interfacial features in ligand space are bins that are
highly populated by ligand atoms participating in intermolecular
interactions (see Computational and Experimental Methods,
Supporting Information, for further details).
Figure 5 shows the global interfacial features that are shared

among kinases belonging to all eight kinase clusters. These
features are the most frequently observed locations of protein
atoms and ligand atoms participating in hydrogen bonding
interactions, polar−polar contacts, and hydrophobic interac-
tions across the set of 112 kinases and 38 inhibitors. Table 1
provides a summary of the frequencies of the type, class, and
space (protein space and ligand space) of intermolecular
interactions found at the sites of global interfacial features.
For the 8512 total docking poses (two top-scoring

conformations for each of the 4256 inhibitor−kinase pairs),
13405 total hydrogen bonds are observed between inhibitors
and kinase binding site residues. Two regions (Region 1 and
Region 2 in Figure 5A), each comprising several spatially
contiguous, globally shared interfacial features in ligand space,
are observed for hydrogen bonding interactions. Together,
regions 1 and 2 contain 4258 instances of ligand atoms
participating in hydrogen bonding with the protein, corre-
sponding to 32% of all observed hydrogen bonds. Of these
4258 instances of hydrogen bonding atoms, 2939 are hydrogen
bond acceptors and 1319 are hydrogen bond donors. Ligand
space region 1 is adjacent to the first three residues of the
kinase hinge region (colored magenta in Figure 5) connecting
the N-terminal and C-terminal kinase lobes. Region 1 accounts
for 2820 (96%) of the 2939 ligand hydrogen-bond-accepting
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atoms that occur in regions 1 and 2 and for all the hydrogen-
bond-donating atoms. Ligand space region 2 is situated next to
the β3 Lys side chain (Lys33 in CDK2) and the Asp side chain

of the DFG motif. This region comprises 119 (4%) of the
ligand hydrogen-bond-accepting atoms.
Similarly, three regions consisting of spatially contiguous,

globally shared hydrogen bonding interfacial features in protein
space are observed (Figure 5B). Hydrogen bonding protein
atoms within these regions interact primarily with those ligand
atoms located within the ligand-space interfacial features shown
in Figure 5A. Together, protein space regions 1−3 contain
3771 instances of protein atoms participating in hydrogen
bonding with docked ligands, accounting for 28% of all
observed hydrogen bonds. Of these 3771 hydrogen bonding
atoms, 1112 are hydrogen bond acceptors and 2659 are hydrogen
bond donors. Protein space region 1 contains the pro-
tein atoms that form hydrogen bonds with atoms in ligand
space region 1 and comprises the first three residues of the
kinase hinge region. The hydrogen bond donors and acceptors
include primarily the main-chain amide nitrogen and oxygen
atoms, respectively. Region 1 has 2855 instances of hydrogen
bonding protein atoms, of which 1016 are hydrogen bond
acceptors and 1839 are hydrogen bond donors. Protein space
regions 2 and 3 comprise residues that donate hydrogen bonds
to the acceptors in ligand space region 2. Protein space region 2
contains the β3 Lys side chain and has 623 hydrogen bonding
atoms, while protein space region 3 contains the main-chain
amide nitrogen of the DFG motif’s Asp and Phe residues and
has 293 hydrogen bonding atoms. The preponderance of
hydrogen bonding interactions that we observe in the first three
residues of the kinase hinge region agrees with other obser-
vations that these residues are the principal hydrogen-bond
providers for ATP and inhibitor binding.52

Moreover, we calculated the most frequent locations of
protein residues across all kinase clusters that take part in
hydrophobic interactions with the docked inhibitors (repre-
sented as orange surfaces in Figure 5B). These hydrophobic
interactions involve principally the following residues: a Val,
Leu, or Ile residue immediately before the G-loop; a Val residue
near the N-terminus of β2; the gatekeeper residue side chain
(Phe80 in CDK2); a Leu or Val residue near the center of the
hinge region; a Leu residue near the C-terminus of β7; a Val,
Leu, or Ile residue in the αC-β4 loop or at the end of β8.
The most frequently occurring location of polar−polar

ligand−protein contacts across all kinase clusters is positioned
along the hinge region and near the Asp residue of the DFG
motif (Figure 5C). This partial localization of polar−polar con-
tacts along the hinge reflects the high prevalence of hydrogen
bonding interactions in this region.
Several kinase inhibitors, including quercetin, PD98059,

U0126, and BMS-509744, were selected from outside the
standard set of 38 inhibitors and were docked to kinases from
each of the eight kinase clusters. The top-scoring binding con-
formations of these docked complexes have the majority of
their hydrogen-bond-donating and hydrogen-bond-accepting
atoms positioned within the globally shared hydrogen bonding
regions (data not shown). This observation suggests that the
identified global hydrogen bonding interfacial features are not
necessarily specific to the standard set of 38 inhibitors but can
be generalized to inhibitors outside the standard set.

Identification of Cluster-Specific Interfacial Features. Each
kinase cluster is characterized by a set of cluster-specific
hydrogen bonding, polar−polar, and hydrophobic interfacial
features. Cluster-specific features were examined in order to
ensure that they are spatially distinct from global features of the
same type.

Figure 5. Ligand−protein interface features that are globally shared
across all eight kinase clusters. For consistency with other figures, the
structure of CDK2 (PDB code: 1B38) is depicted in all panels.
Surfaces enclose contiguous features. (A) Most frequent locations for
ligand hydrogen bonding atoms (ligand space). (B) Most frequent
locations for protein hydrogen bonding atoms (protein space). Red
and blue surfaces correspond to hydrogen bond acceptors and donors,
respectively. Orange surfaces denote most frequent locations for
hydrophobic interactions. (C) Most frequent locations for polar−polar
contacts for protein atoms (protein space).

Table 1. Numbers of Instances of Intermolecular Interaction
Types Occurring in Regions of Globally Shared Features and
Cluster-Specific Features in Protein Space and Ligand
Spacea

globally shared cluster-specific total

protein
space

ligand
space

protein
space

ligand
space

protein
space

ligand
space

HB donor 2659 1319 2227 1651 8523 4882
HB acceptor 1112 2939 1684 2247 4882 8523
polar−polar 31968 28460 6792 1578 80497 80497
hydrophobic 5876 NAb 3915 NA 25279 NA

aNumbers show total counts among the two top-scoring poses for all
of the 4256 simulated ligand−protein complexes. bHydrophobic
interactions were characterized only for protein residues.
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Table 2 lists the frequencies of intermolecular interactions
occurring at locations of cluster-specific features across all
analyzed ligand−protein complexes. The number of occur-
rences of atoms participating in intermolecular interactions
within bins corresponding to cluster-specific features varies
widely across the eight kinase clusters. For example, within the
set composed of the two top-scoring poses for all 4256
modeled ligand−protein complexes, there are 1696 instances of
hydrogen-bond-donating protein atoms located in the bins that
correspond to the protein-space hydrogen-bond-donor features
specific to kinase cluster VII. Correspondingly, there are 1690
instances of hydrogen-bond-accepting ligand atoms positioned
in bins that correspond to the ligand-space hydrogen-bond-
acceptor features specific to kinase cluster VII. In contrast, there
are only 22 instances where hydrogen-bond-accepting protein
atoms are situated in bins corresponding to protein-space
hydrogen-bond-acceptor features that are specific to kinase
cluster III.
Table S5 in Supporting Information presents data on the

degree of uniqueness of the cluster-specific features for each
intermolecular interaction type in protein space for the eight
kinase clusters. The columns for kinase cluster numbers I−VIII
indicate the relative proportions of ligand−protein complexes
within that cluster where ≥1 protein atoms participate in the
given intermolecular interaction type at the location of cluster-
specific features of the cluster numbers listed in the rows.
Proportions are scaled relative to the proportion for the kinase
cluster corresponding to the row number. The table shows, for
instance, that the bins of the hydrogen-bond-donor features
that are specific to kinase cluster I are not populated by
hydrogen-bond-donating atoms in any of the complexes formed
by proteins belonging to clusters II−VIII. This uniqueness of
occurrences in a single cluster is also the case for hydrogen-
bond-donor features for clusters III, IV, and VI and for
hydrogen-bond-acceptor features for clusters IV, V, and VI. In
most cases, however, the features of a cluster are not uniquely
populated by atoms from the cluster’s own kinase members.
Nevertheless, the relative probabilities that they are populated
by interaction-forming atoms of kinases from other clusters are
low. For instance, the proportion of complexes in kinase cluster
I where a protein atom forms a hydrogen-bond-donating
interaction within the bins of the hydrogen-bond-donor
features specific to cluster II is ∼5 times smaller than the
proportion for cluster II complexes themselves (0.22 vs 1 in the
second row of Table S5). Similarly, the proportion of cluster III
complexes where a protein atom forms a hydrogen-bond-
donating interaction within the bins of the hydrogen-bond-
donor interfacial features specific to cluster VIII is 50 times
smaller than that of cluster VIII complexes themselves (0.02 vs
1 in the eighth row of Table S5).

Table S6 in Supporting Information shows data about the
uniqueness of the cluster-specific features in ligand space.
Similarly to protein space, there are several cases where the
cluster-specific interfacial features of a particular kinase cluster
are indeed uniquely populated by that cluster’s docked ligands.
The hydrogen-bond-donor interfacial features of kinase cluster
IV and the hydrogen-bond-acceptor interfacial features of
kinase cluster VI, for example, are populated by ligand atoms
only from the complexes of these clusters’ kinase members. The
remainder of the cluster-specific interfacial features in ligand
space are likewise characterized by low relative probabilities of
being occupied by ligands docked to kinases from other
clusters.
As a validation step for the identification of unique interfacial

features, we extracted features that are unique to the MAP
kinases analyzed in our study. One of the identified unique
hydrophobic features in protein space is the gatekeeper residue,
which is not found to be a unique hydrophobic feature for the
non-MAP kinase structures. This finding shows agreement with
the gatekeeper hypothesis for the MAP kinases48,49 and
indicates that the feature extraction method is able to reproduce
features that have been detected experimentally. In addition to
the gatekeeper residue, several other unique hydrophobic
features were found for the MAP kinases, suggesting that the
gatekeeper does not act alone in determining binding
selectivities.

Graphical Analysis of Cluster-Specific Interfacial
Features. Figure 6 shows the locations of cluster-specific
hydrogen bonding interfacial features in protein space for each
kinase cluster. The figure also indicates the feature numbers
and the quantity of hydrogen bonding interactions occurring at
each feature. Cluster-specific features are distributed through-
out the entire active site, and clusters have widely varying
numbers of specific features and feature populations. Several
unique hydrogen bonding regions are found along the center
and C-terminal end of the hinge region. Figure S2 in
Supporting Information contains examples of docked ligands
from the Karaman et al. data set as they form hydrogen bonds
at the sites of cluster-specific hydrogen bonding interfacial
features. Cluster-specific hydrophobic-interaction interfacial
features consist primarily of protein residues concentrated in
the N-terminal lobe portion of the active site (Figure 7). In
contrast, cluster-specific polar−polar-contact interfacial features
comprise primarily protein side chains distributed throughout
the active site (Figure S3 in Supporting Information). Protein
structural elements that define the specific interfacial features of
kinase clusters are listed in Table S7 in Supporting Information.
The relative frequency of the types of hydrogen bonding

atoms in protein space is similar for both the set of hydrogen
bonds across all eight kinase clusters and those occurring in the

Table 2. Total Numbers of Instances of Intermolecular Interaction Types Occurring at Locations of Cluster-Specific Features
for Kinase Clusters I−VIII

protein space I II III IV V VI VII VIII

HB donor 159 29 0 64 61 37 1696 181
HB acceptor 287 43 22 60 127 269 536 340
polar−polar 672 674 1250 276 874 1054 1019 973
hydrophobic 511 185 421 425 519 901 318 635
ligand space I II III IV V VI VII VIII

HB donor 217 46 10 83 127 274 533 361
HB acceptor 180 28 0 69 59 39 1690 182
polar−polar 340 228 93 316 67 97 369 68
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cluster-specific regions. Among all hydrogen bonds observed in the
docked ligand−protein complexes, 65% of hydrogen bonding
protein atoms are main-chain amide group oxygen or nitrogen
atoms, while 35% of hydrogen bonding protein atoms occur in
amino acid side chains. Similarly, among hydrogen bonds observed
at the cluster-specific hydrogen bonding features, 71% and 29% of
the bonding protein atoms are in main-chain amide groups and

side chains, respectively. Furthermore, 57% of the hydrogen
bonding atoms in the cluster-specific regions of protein space are
hydrogen bond donors and 43% are acceptors.
Similar to interfacial features that are specific to individual

kinase clusters, there exist hydrogen bonding interfacial features
in ligand space that are specific to each of the four ligand
clusters (Figure 8). These are spatial bins that are highly
populated with ligand atoms forming intermolecular inter-
actions with protein. Ligand cluster 1 shows a wide spatial
distribution of several cluster-specific hydrogen bonding
regions. The most highly populated of its cluster-specific
hydrogen-bond-donating regions is situated near β3, β4, and

Figure 6. Cluster-specific hydrogen bonding features in protein space.
Hydrogen bonding features that are unique to each kinase cluster are
enclosed by solid surfaces, and global hydrogen bonding features are
enclosed by mesh surfaces. Red and blue surfaces denote spaces
containing high frequencies of protein hydrogen bond acceptor and
donor atoms, respectively. Numbers on the panels indicate the
numbers of occurrences of hydrogen bond acceptors or donors in the
corresponding feature bin across all inhibitor−protein complexes in
the kinase cluster. Numbers in parentheses denote feature numbers as
listed in Table S7; for example, 268(1) accompanying a red surface
indicates that the surface represents hydrogen bond acceptor feature 1
for the given kinase cluster and that the feature contains a total of 268
occurrences of hydrogen-bond-accepting atoms. Each panel shows
protein hydrogen bonding features superimposed on the structure of
human CDK2 (PDB code: 1B38) to provide a consistent reference
protein structure. Structure labels in the first panel apply to all panels.
G.K. signifies the gatekeeper residue.

Figure 7. Cluster-specific protein features corresponding to hydro-
phobic interactions with docked ligands. Hydrophobic features that are
unique to individual clusters are enclosed by solid surfaces; globally
shared hydrophobic features are enclosed by mesh surfaces. Hydro-
phobic features are shown superimposed on the structure of human
CDK2 (PDB code: 1B38) to provide a consistent structural reference.
Numbers next to features correspond to feature numbers as listed in
Table S7.
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β5, while the most highly populated hydrogen-bond-accepting
region is located near β1 and β2 at the base of the G-loop.
The features specific to ligand cluster 2 consist almost
exclusively of hydrogen-bond-accepting regions, with the two
most heavily populated regions positioned near the top of
the G-loop. A hydrogen-bond-donating region for cluster 2
occurs adjacent to αG. Ligand cluster 3 contains a single
cluster-specific hydrogen-bond-donating region situated near
the C-terminus of α3. Ligand cluster 4 has a concentration of
cluster-specific hydrogen-bond-donating and -accepting regions
near the C-terminal end of the hinge region.
The clustering of the experimental binding data assigns to

ligand cluster 4 most of the broadly binding inhibitors,
including staurosporine and sunitinib. These inhibitors bind
to the majority of the kinase set with moderate to high affinity
(Figure 4). For ligand clusters 1−3, an average of 50% of the
intermolecular hydrogen bonds occurring in the cluster-specific
hydrogen bonding regions are formed with protein main-chain
atoms. In contrast, 90% of the hydrogen bonds occurring in the
cluster-specific regions of ligand cluster 4 are formed with
main-chain atoms. Staurosporine, for example, has interactions
with proteins from all eight kinase clusters that are mediated by
hydrogen bonds formed almost exclusively with main-chain
carbonyl oxygen atoms. This preference for main-chain atoms
suggests that hydrogen bonding by inhibitors in ligand cluster 4
is less sensitive to the nature of specific side chains than is the
case for ligands in other clusters. The putative reduced sen-

sitivity to side-chain identity may underlie the broad-binding
nature of the ligands in cluster 4.

Validation of Feature-Identification Procedure Using
Second Inhibitor Set. Fedorov and co-workers have reported
shifts in thermostabilities for 60 Ser/Thr kinase targets upon
binding by 156 kinase inhibitors.4 These shifts correlate with
binding affinity, where a ΔTm of 4 °C corresponds to Kd <
1 μM and a ΔTm of 8 °C corresponds to Kd < 100 nM. We
selected 91 kinase inhibitors from this set and docked them to
our studied group of 112 kinases taken from the Karaman et al.
data set. Of the 60 kinases in the data set of Fedorov et al., 28
also belong to our set of 112 analyzed kinases. Thus, we are
able to compare the experimentally observed binding strengths
of these shared 28 kinases with their top-scoring binding
conformations as predicted by virtual docking. We compared
the coincidence of type and location of predicted interactions
with the cluster-specific features calculated previously for the
Karaman et al. data set.
Among the simulated ligand−protein complexes of the 91

kinase inhibitors taken from the data set of Fedorov et al., those
that are tight binders (ΔTm ≥ 4 °C) form more intermolecular
contacts with cluster-specific regions than do weak binders.
Tightly binding ligands from this set form on average two
hydrogen bonds and two hydrophobic contacts at the location
of interfacial features that are specific for the cluster to which
the interacting kinase belongs. In contrast, ligands whose
binding is associated with ΔTm < 4 °C form on average only 0.8
hydrogen bond and 1.1 hydrophobic contact with interacting
kinases at the sites of cluster-specific interfacial features. Figure
S4 in Supporting Information shows the conformations of three
of these inhibitors bound to the tyrosine kinases ITK and LYN.
The coincidence of the inhibitors’ hydrogen bonding atoms
with the locations of cluster-specific hydrogen bonding inter-
facial features is readily observed.
For the set of 91 kinase inhibitors from the study of Fedorov

et al., we find that those inhibitors that form stronger
interactions with a wide range of kinases also tend to form a
greater share of their hydrogen bonds with main-chain atoms in
their virtually docked conformations than do narrowly binding
inhibitors. Among those inhibitors that have an average
experimental ΔTm ≥ 4 °C across the complete set of kinases
in the Fedorov et al. data set, 76% of the hydrogen bonds of the
docked conformations are formed with protein main-chain
atoms. In contrast, among inhibitors with average experimental
ΔTm < 4 °C across the set of kinases, only 50% of modeled
hydrogen bonds are formed with main-chain atoms. This
observed propensity of broad binders to form hydrogen bonds
with main-chain atoms is also found for the broadly binding
ligands in ligand cluster 4 from the Karaman et al. data set.

Assessing Whether Cluster-Specific Features Are Also
SDFs. Cluster-specific features were initially considered to be
only potential SDFs. In principle, it is possible that a set of
structural features is unique to a kinase cluster but does not
constitute the actual determinants of binding selectivity for the
associated proteins. In order to shed more light on whether the
identified cluster-specific features are actual determinants of
binding selectivity, we studied their relative contributions to
ligand binding affinities. For the present study, this
determination was limited to hydrogen bonding features that
consist of protein side chains. We reasoned that for a given
ligand−protein complex, removal of the cluster-specific hydro-
gen bonding features in protein space should have a more
detrimental effect on the strength of the binding interaction

Figure 8. Hydrogen bonding features in ligand space that are specific
to individual ligand clusters. Red and blue surfaces denote features that
have high frequencies of hydrogen-bond-accepting and -donating
atoms, respectively, in kinase inhibitor molecules across the standard
set of 112 kinases. Examples of docked inhibitors belonging to the
specified ligand cluster and forming hydrogen bonds with kinases are
shown. Numbers on the panels denote the numbers of occurrences of
hydrogen bond acceptors or donors in the corresponding feature bin
across all ligand−protein complexes within the given ligand cluster.
Arrows indicate hydrogen bond examples that occur at the location of
cluster-specific hydrogen bonding features. Hydrogen bonds are
represented by dashed lines.
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than removal of all other hydrogen bonding protein side chains.
In order to test this possibility, we focused on the set of
complexes consisting of inhibitors from ligand cluster 4 and
kinases from kinase cluster VIII, that is, cluster (VIII,4), and
also on the sets of complexes from clusters (VII,4) and (II,3).
Most complexes in these sets are characterized by high-affinity
interactions (Figure 4C).
For the set of ligand−protein complexes in cluster (VIII,4),

removing the cluster-specific hydrogen bonding side chain
features by mutating the residues to Gly results in greater
reductions in ligand binding affinity as predicted by the
empirical scoring function XScore62 than does removal of all
other protein side chains that form hydrogen bonds with the
ligand. Across the whole set of complexes taken from cluster
(VIII,4), removing the cluster-specific hydrogen bonding
features leads to an average increase of 650 nM in predicted
Kd values, whereas eliminating all other hydrogen bonding side
chains simultaneously increases predicted Kd values by an
average of 70 nM. Similarly, for the set of complexes from
cluster (VII,4), the corresponding increases in predicted Kd
values are 370 nM and 120 nM, respectively, while for cluster
(II,3) the increases are 310 nM and 50 nM. Thus, for each
cluster set, eliminating intermolecular hydrogen bonds formed
with protein side chains that are cluster-specific features leads
to significantly greater reductions in predicted binding affinity
than does removal of all other hydrogen bonding side chains.
This observation suggests that the cluster-specific hydrogen
bonding features contribute more to binding affinity than do
the other hydrogen bonding features and so likely play a greater
role in binding selectivity than do other hydrogen bonding
sites. For this reason, we designate the cluster-specific features
as SDFs.
Prediction of Kinase Binding for New Ligands by

Machine Learning. Predictions of Binding Affinities of
Single Ligands. We sought to assess whether the identified
cluster-specific structural features of the binding interface can
be used to predict the Ki of inhibitors for individual kinases. To
this end, we constructed a random forest machine-learning
model that uses vectors corresponding to each modeled
ligand−protein complex from the Karaman et al. data set as
input data. The vectors consist of the distances between all
cluster-specific features for hydrogen bonding, polar−polar
contacts, and hydrophobic interactions and the closest atoms in
the docked ligand that participate in each corresponding
interaction type. In our training set, there are 892 vectors
corresponding to a 'binder’ class label (experimental Kd < 10 μM)
and 2947 vectors corresponding to a 'nonbinder’ class label

(experimental Kd > 10 μM). During the model training, accuracy
rates for classification of binders and nonbinders are, respectively,
76% and 83%, as determined by out-of-bag (OOB) error
estimation.
The binding affinity of compounds from outside the standard

set of 38 kinase inhibitors for a specific kinase structure can be
predicted using the trained random forest model. We selected
nine such compounds and predicted the Kd values of their
binding interactions with CDK2, ZAP70, and PYK2 based
solely on their computationally docked poses in the active sites
of these proteins. Table 3 lists the selected compounds and
predictions of their binding affinity ranges, reported as
−log(Kd) > 5.0 or −log(Kd) < 5.0 for binders and nonbinders,
respectively. The random forest model predicts that 22 of the
27 ligand−kinase complexes have −log(Kd) > 5.0 (binders).
Only NU-6102, SC-221409, SU-11274, tyrphostinA23, and
dimethyladenine are predicted to bind to PYK2 with −log(Kd)
< 5.0 (nonbinders).

Experimental Validation of Inhibitor Kd Predictions. We
used electrospray ionization mass spectrometry (ESI-MS) to
perform inhibition assays for the nine selected compounds
described above against kinases CDK2, ZAP70, and PYK2
(spectra shown in Figures S5−S8 in Supporting Information).
As indicated in Table 3, the experimental −log(Ki) values
(Ki and Kd values interpreted the same for competitive inhibitors)
of all nine compounds are >5.0 for CDK2 and hence satisfy the
criterion for being classified as binders. For ZAP70 and PYK2,
five and four of the compounds, respectively, had no observed
inhibition (−log(Ki) < 5.0). Overall, 19 of the 27 predicted Ki
values were in agreement with their experimental values, yielding
an accuracy rate of 70%. This accuracy rate is slightly less than the
accuracy rate for predicting binders (76%) obtained from the
OOB estimate during model training.

Predictions of Selectivity Profiles of Ligands and Kinases.
We also evaluated how well the identified structural features
can predict binding selectivity profiles of individual compounds
across sets of proteins and of individual proteins across sets of
compounds. To this end, we used the trained random forest
model described above to predict binding interactions of 91
kinase inhibitors and 8 kinases (ERK1, ERK3, CAMK1D,
CAMK2D, CDK2, CLK1, LOK, GSK3B) taken from the
binding data set of Fedorov and co-workers.4 The inhibitors are
the same compounds whose docked conformations were
calculated and described in an earlier section (Validation of
Feature-Identification Procedure Using Second Inhibitor Set).
The 728 ligand−protein combinations were predicted to
correspond to binding or nonbinding interactions based on

Table 3. Predicted and Experimentally Measured Values of −log(Ki) of Selected Compounds for Kinases CDK2, ZAP70, and
PYK2a

CDK2 ZAP70 PYK2

predicted observed predicted observed predicted observed

aloisine >5.0 9.28 ± 0.07 >5.0 5.58 ± 0.66 >5.0 6.03 ± 0.43
NU-6102 >5.0 8.98 ± 0.05 >5.0 <5.0 <5.0 <5.0
SC-221409 >5.0 6.97 ± 0.03 >5.0 <5.0 <5.0 <5.0
SU-11274 >5.0 6.31 ± 0.15 >5.0 <5.0 <5.0 7.98 ± 0.25
D4426 >5.0 8.28 ± 0.06 >5.0 5.93 ± 0.44 >5.0 6.23 ± 0.28
quinoxaline1 >5.0 5.67 ± 0.29 >5.0 6.08 ± 0.35 >5.0 7.39 ± 0.17
tyrphostinA23 >5.0 6.21 ± 0.38 >5.0 <5.0 <5.0 6.79 ± 0.17
scytonemin >5.0 6.43 ± 0.20 >5.0 5.81 ± 0.42 >5.0 <5.0
dimethyladenine >5.0 5.96 ± 0.13 >5.0 <5.0 <5.0 <5.0

aCompounds with −log(Ki) > 5.0 (i.e. Ki < 10 μM) were defined as binders.
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having predicted Kd values <10 μM or >10 μM, respectively.
For all 728 protein−ligand interaction combinations from the
Fedorov data set that we analyzed, the model predicts
interaction strengths with 69% accuracy, which is similar to
the accuracy estimated from out-of-bag calculations during the
training of the random forest model and from the
experimentally validated set of nine compounds and three
kinases presented above.
For predictions of binding profiles of individual kinases

across the set of 91 inhibitors, there is good agreement between
our predictions and the experimental values measured by
Fedorov and co-workers. As shown in Table S8 in Supporting
Information, there is an average of 70 ± 10% agreement
between predictions and experiment for each kinase’s binding
profile to the set of 91 compounds. The model performs
particularly well for kinases ERK1 and CAMK2D, for which it
predicts binding profiles with 84% and 77% accuracy,
respectively.
Similarly, predictions of binding profiles of single compounds

across the set of eight kinases are in generally good agreement
with experiment. For 9, 12, and 27 of the total 91 compounds,
the model predicts their binding profiles to the set of eight
kinases with 100%, 87.5%, and 75% accuracy, respectively,
accounting for over half the analyzed compounds (Table S8).
Overall, 85 of the 91 compounds have their binding profiles
estimated with ≥50% accuracy.
In addition, we calculated whether the accuracy of compound

binding profile prediction is greater than what would be
expected simply on the basis of independent event probabilities.
Figure S9 in Supporting Information shows cumulative
probabilities of having given numbers of total correct
predictions (out of eight) for individual compound binding
profiles to the eight kinases. As shown in the figure, the
probability curve that corresponds to the observed prediction
accuracies is shifted to the right of the curve that would be
expected if the binding profiles were predicted with an accuracy
simply matching independent event probability. For instance,
when the probability of success for a single trial matches the
overall prediction accuracy for the trained model, the expected
binomial distribution probability of having ≥6 correct
predictions for a given compound’s binding profile is 0.32. In
fact, the observed probability of having ≥6 correct predictions
is 0.53. Similarly, the expected and observed probabilities for
having ≥7 correct predictions are 0.11 and 0.23, respectively,
and those for having eight correct predictions are respectively
0.02 and 0.10. In all cases for cumulative probabilities of having
at least 4 or more correct predictions out of the 8 predictions
that constitute a compound’s binding profile, the model
performs with scaling that is better than that of independent
probability.
In similar fashion, the accuracy of prediction of the binding

panels of the kinases to the 91 compounds also exceeds that
which would be expected based on independent event pro-
bability. For four of the eight kinases, the binomial distribution
probability of achieving the observed accuracy is <0.01, and for
only two of the kinases is the probability >0.5.
Taken together, these results show that the observed

accuracy of the model in predicting binding profiles is notably
greater than what would be expected if profiles were forecast
following simple independent event probability, that is, as
though the pattern of activity of a compound or protein com-
prised separate, unrelated individual predictions. This improve-
ment over binomial distribution behavior suggests that the

identified SDFs indeed play a role in regulating binding selecti-
vity and that the random forest model successfully incorporates
these features.

Predictions of Cluster Assignments. The vectors used in
conjunction with the random forest model to predict binding
affinities were likewise used as input for a random forest model
to predict ligand cluster assignments for the ligands of all
virtually docked ligand−protein complexes. The model was
trained using known ligand cluster numbers (1−4) as class
descriptors. During training, the OOB accuracy rate for cluster
classification is 88%. Similarly, the classification accuracy as
determined by leave-one-out analysis across the whole set of
modeled kinases is 89%. We also constructed a random forest
model using the same input vectors and kinase cluster numbers
(I−VIII) as class descriptors in order to predict kinase cluster
assignments. The classification accuracy associated with this
model as determined by both OOB during model training and
by leave-one-out analysis is 99%. Overall, 88% of ligand−
protein complexes are assigned to both the correct ligand
cluster corresponding to the ligand and the correct kinase
cluster corresponding to the protein. This result indicates that,
for a ligand−protein pair, the cluster assignment of both the
inhibitor and the kinase can be predicted with considerable
accuracy based solely on the docked conformation of the
inhibitor relative to the cluster-specific interface binding
features.
Further, given the correct cluster assignment for a ligand−

protein complex, the relative binding affinity of the ligand is
suggested by the average affinities of other members of the
cluster. For example, the average experimental Kd values of
complexes assigned by the random forest model to clusters
(VII,1), (VII,2), (VII,3), and (VII,4) during the leave-one-out
procedure are 0.1 μM, 3 μM, 2 μM, and 0.06 μM, respectively.
The average experimental Kd values for all the members of
these same clusters are 2.6 μM, 9.2 μM, 5 μM, and 0.5 μM,
respectively. Similarly, the average experimental Kd values for
complexes assigned by the model to clusters (II,1), (II,2),
(II,3), and (II,4) are 5 μM, 3 μM, 0.03 μM, and 5 μM, while the
average experimental Kd values for all members of these clusters
are 7.2 μM, 7.4 μM, 0.05 μM, and 7.5 μM. In both cases, we
observe consistency between the trends for the average
experimental binding affinities across all members of a cluster
and the average experimental binding affinities of complexes
assigned to the cluster by the random forest model.

■ DISCUSSION
Our findings bolster our hypothesis that large groups of
proteins and ligands can be clustered based on their binding
profile similarities and that these clusters, in conjunction with
ligand docking, can be used to extract features of the binding
interface between proteins and ligands that underlie similarities
and differences in binding profiles. As we demonstrate using
kinases as a model, clustering of proteins and ligands according
to similarity of experimental Kd values proves useful as a first
step toward identifying these features. In conjunction with
binding-affinity heat maps, clustering reveals clear groupings of
ligand−protein binding patterns. For example, nearly all
broadly binding inhibitors, such as staurosporine and sunitinib,
cluster together in ligand space and bind to all protein clusters,
while other inhibitors tend to bind only to specific protein
clusters. For each protein cluster, we used in silico docking to
generate ligand−protein complex structures and identified
spatial locations, referred to as interfacial features, in the
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binding interface that participate with high frequency in
intermolecular interactions, including hydrogen bonding,
polar−polar contacts, and hydrophobic interactions. A large
number of such interfacial features are shared globally for
kinases across all eight kinase clusters. Conversely, many
features are found to be specific to kinases belonging to a single
cluster. These SDFs drive the cluster assignments of the
proteins and ligands and demonstrate that there are numerous
chemical features in both proteins and ligands that govern
binding selectivity. Interestingly, the presence of these multiple
features indicates that selectivity and cluster assignment are
determined not by single structural features, such as the identity
of the gatekeeper residue in the MAP kinases, but by
combinations of features.
Cluster-specific hydrogen bonding interfacial features con-

sisting of protein side chains were analyzed in terms of their
contributions to ligand binding affinity relative to other
hydrogen bonding side chains. For each of three sets of
complexes that correspond to high-affinity groupings in Figure
4C, results of energy calculations suggest that the cluster-
specific hydrogen bonding features make a significantly greater
contribution to binding affinity than do the other hydrogen
bonding side chains. This observation implies that the cluster-
specific features are, at least in terms of hydrogen bonding
interactions, determinants of selectivity and led us to designate
the cluster-specific features as SDFs.
Identification of SDFs in the binding interface that are

specific to individual groups of kinases provides an easily
visualized and chemically intuitive model for the basis of ligand
binding selectivity. The locations of SDFs in kinases from a
given kinase cluster indicate the amino acid residues (when
examining SDFs in protein space) or ligand functional groups
(when examining SDFs in ligand space) that contribute to each
type of interaction with the kinases. Knowledge of these
residues or functional groups can potentially be applied to
design small molecules that selectively target the kinases from
that cluster.
SDFs can also be used to model the strength of binding

interactions. Machine-learning models that employ identified
SDFs as inputs are predictive of the binding affinity of
compounds to specific kinases. A random forest model that
uses binding conformations of docked compounds relative to
the cluster-specific interfacial features predicts with good
accuracy whether an individual ligand−protein interaction is
characterized by Ki < 10 μM. Applying this model, we can also
predict reasonably well the selectivity of a single compound
across a set of kinases or, alternatively, the selectivity of a single
kinase across a set of compounds, as demonstrated for a
collection of 91 kinase inhibitors and 8 kinases taken from the
binding data set of Fedorov and co-workers. However, despite
the ability of the random forest model to predict binding
profiles with decent accuracy, there is room for improvement.
Current work in our laboratory focuses on additional
descriptors to add to the descriptor vectors that are used in
conjunction with the random forest model in order to improve
further the accuracy of binding profile prediction.
The presented methodology represents a shift from certain

other recently reported QSAR models for kinase binding. For
instance, Sheridan and co-workers have developed a model63

that accurately predicts the overall similarity in the binding
profiles of kinase pairs for given sets of ligands, but the model
does not predict binding behavior for individual ligands. To our
knowledge, the present study is the first to demonstrate

accurate prediction of kinase binding affinities using 'selectivity
filters’ in both protein space and ligand space that have been
computationally derived from a large set of virtually docked
ligand−protein complexes. The use of derived selectivity filters
to predict ligand binding affinities provides an alternative
approach to the use of energy force fields and statistical scoring
functions.
Our methodology is based on several assumptions. First, it

assumes that the clustering protocol, which is based solely on
similarities of binding affinity profiles, also reflects structural
and chemical differences between kinase active sites. Second, as
the approach depends on identifying specific structural features
of the ligand−protein interfaces of kinases, it necessarily
assumes that the important forces for determining binding
interactions are attributable to the residues immediately
surrounding the active site. Third, it presupposes accurate in
silico docking poses for ligand−protein complexes. Nonethe-
less, the relatively high accuracy of our docking protocol in self-
docking tests leaves us confident that a sizable majority of the
predicted docking poses used for identifying interface features
are likewise accurate. Moreover, we find that the clustering
method indeed captures notable differences between the active
sites of kinases belonging to different kinase clusters in terms of
structure and chemical properties, as indicated by both the
PMScore algorithm53 and ClustalW54−56 amino acid sequence
alignment.
Whereas previous studies of SDFs have focused on the

structures and microenvironments of kinases themselves, our
investigation takes a broader view and explores features of the
ligand−protein binding interface at both the protein structural
level and the ligand structural level. The predominant features
that are pinpointed by the present methodology are consistent
with those that are found by examining large numbers of
individual kinase structures on a case-by-case basis, as analyzed
elsewhere.52 Given that our methodology is applicable to other
protein families, this finding shows that the detection of
binding-interface features of a large set of proteins, including
whole enzyme classes and protein families, can be automated
and need not necessarily depend on manual inspection of
numerous individual experimental structures.
Current work in our laboratory is focused on utilizing the

identified structural features specific to individual kinase
clusters for specific applications. The set of cluster-specific
ligand−protein interface features may be conceived of as hot-
spots within the protein active site, and molecular fragments
placed at the hot-spot locations can be linked to generate
complete molecules.64−67 This de novo fragment-based drug
discovery approach may yield novel selective kinase inhibitors
and aid in toxicity prediction. In addition, we are screening the
current release of the Protein Data Bank for protein structures,
including nonkinases, containing active sites whose main chain
and side chains are arranged such that they can form atomic
contacts with the determined interfacial feature locations. In
principle, this screening may identify proteins whose activity
can be modulated by kinase inhibitors belonging to specific
ligand clusters in our analyzed data set. Unexpected cross-
reactivity of approved inhibitors with pharmacologically
interesting targets represents the potential to repurpose existing
drugs for alternative therapeutic needs.
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